
STITCHING SMILES

Report
Project A.I.

MSc Artificial Intelligence, University of Amsterdam

Gilles de Hollander Thomas van den Berg
0586544 5789346

Gilles.de.Hollander@gmail.com thomas.g.vandenberg@gmail.com

Supervised by:

dr. Theo Gevers
dr. Albert Salah
Gijs Molenaar
Roberto Valenti

February 2nd, 2011

1 INTRODUCTION

The goal of this project was to develop a system that
can automatically combine a number of group por-
traits of the same people into a composite where each
person “looks good” c.q. smiles. This is a combina-
tion of three different topics in computer vision and
digital imaging. The first and most mature of these
topics is face detection, as described in the classi-
cal [Viola and Jones, 2001]. Second, there is smile
detection, i.e. determining how much a given face
smiles. Research has been done on smile detection
both in videos and still images, examples are [Kotsia
and Pitas, 2006] and [Whitehill et al., 2009]. The fi-
nal topic that our project depends on is image compo-
sition, the combining of parts of multiple images into
a seamless composite. The inspiration for our project
was the tool described in [Agarwala et al., 2004] that
can compose pictures using an algorithm that com-
putes the minimal cut in graphs. The foundation of
this method, using graph cuts for segmentation, was
first described in [Boykov and Jolly, 2002].

2 PROBLEM & METHOD

2.1 The Problem

The goal of our project was to design and implement
a system that can analyze a series of group portraits
of the same people and make a new composition with
parts of those group portraits in which every partici-
pant smiles. For this the system had to be able to:

1. Find and cluster the same persons in every group
portrait,

2. Find, for every person, the “most smiling” face,

3. Stitch the images containing these faces to-
gether in such a way that a natural-looking
composition of the different group portraits is
achieved.

In the coming sections we will describe which ap-
proach we have taken to tackle all these problem in
sequence and give a quantitative evaluation of some
parts of our system and qualitative evaluation of our
system as a whole.

2.2 Methodological issues

For our application we had to compose a system con-
sisting of very different components and use them to-
gether. There were some methodological difficulties

as well as practical problems in the implementation.
In the following section we will mainly focus on the
methodological difficulties: which algorithms we used,
how we have found the right parameters and how we
glued it all together. Getting the different parts to
work together proved harder than we thought, but
we will not describe it in any detail.

3 The System

Alignment

An effective preprocessing step is that the system
aligns all the input images. In practice this alignment
is especially important in large images, where very
small movements of the camera can distort the com-
position of multiple images, even if a tripod is used.
When small enough, these shifts are compensated by
our alignment method.
To do this, our system takes the first image as a

base case and tries to align all the next images to it
using an exhaustive search of the local area. It does
so by using pointers that correspond to evenly dis-
tributed subsampled pixels in the images, and moving
these pointers along as it iterates through the differ-
ent possible shifts. The total difference in RGB pixel
values of the pseudo-aligned image and the first im-
age are used as an error measure. A search in a 30x30
pixel window with a subsampling of 1/50 takes only
a second or so to perform.

3.1 Step One: Detecting Faces

Detecting faces in still images is pretty much a solved
problem, provided that the pose of the head makes
for a more or less frontal shot. We have simply used
the Haar cascade detector implemented in OpenCV,
this is more than accurate and fast enough for our
purpose. The inner workings of this algorithm, as de-
scribed in [Viola and Jones, 2001], are not relevant for
understanding of our project, but a short explanation
of the input and output follows.
As input, we give the algorithm a certain Haar cas-

cade to use, these cascades are trained to detect
whole faces at different orientations, facial features
or certain limbs. We used the “default frontal face”
cascade that comes with OpenCV. Furthermore, the
algorithm is given a downscaled version of each of the
portraits in the series, they are reduced to anything
between 0.5 and 2 megapixels. Such an amount of

1

reduction does not influence the detection rate signif-
icantly, but it decreases processing time for obvious
reasons.
The output of the algorithm is a list of rectangles,

formalized as tuples of (x, y, width, height).
Overlapping detections, where one face is detected
at multiple scales or positions, are merged into one
by the OpenCV implementation. False detections do
occur, and we filter some of these by removing all
faces whose size is more than two standard devia-
tions from the average size, assuming that the people
in the group portrait are roughly at the same distance
from the camera, and thus their faces are about the
same size. This also has the advantage that coinci-
dental bystanders in the background are filtered out.
The output rectangles are scaled back to the original
size and the image window belonging to each face is
extracted.

Clustering Faces

Before we can decide which face is the most smiling
for a person, we need to establish which faces be-
long to the same person. One of our assumptions
was that people do not move a lot between different
photographs in the series, so we use the position as
an indicator of identity. We use agglomerative clus-
tering1 to cluster all faces that are closer than one
“average face size”.

3.2 Step Two: Rating Smiles

The next step is very important: the rating of the
smiles. To make a composition of multiple group por-
traits where every person smiles, the system of course
has to see who is smiling in which pictures.
To do this the system has a relatively simple, but

effective smile classifier that can give a set of faces
a continuous ‘smile rating’, making it easy to rank a
number of pictures of the same person by how much
this person is smiling.

Preprocessing

To keep the classifier fast enough for real-time use of
the entire system, and also to increase its accuracy,
some preprocessing had to be done with the face-
images that the Viola-Jones algorithm gave as output.

1Using clusterdata() in MATLAB.

• First, the faces had to be extracted according
to the (x, y, width, height) rectangles re-
turned by the Viola-Jones algorithm and then fur-
ther cropped, with the goal to reduce the picture
to only just the smile-determining facial features
and especially to remove unwanted background
noise. We cropped every detected face according
to Figure 1.

Figure 1: Illustration of the amount of cropping
on each side of the Viola-Jones detected faces.

• Next the system equalizes the histograms of the
faces. This means that the intensities of every
pixel are adjusted in such a way that, as far as
possible, every possible intensity occurs with the
same frequency, without the ranking in intensity
of any pixel being changed. This is done to intro-
duce some illumination invariance to the images
that the feature detector and classifier get to
process even further.

• Finally, all the images are resized to the same
dimensions (64x64 in our standard implementa-
tion), these are rather small, as not many pixels
are needed for effective classification and it heav-
ily increases the performance of the classifier in
terms of speed, which is especially nice in a real-
world application.

3.2.1 Edge Orientation Histograms

Our classifier is much-inspired by the review by
[Whitehill et al., 2009], in which Whitehill and
his colleagues give an overview of different exist-
ing face expression recognition-methods and their
strengths and weaknesses. He shows that multi-
ple feature/classifier-pairs can give very good results
(95%+ accuracy). As our problem is the ranking of
a set of faces, which is, we think, simpler than classi-
fying single smiles as either smiling or not-smiling, we

2

chose the fastest and most easy to set up from this
set of well-performing classifiers.
We decided to use Edge Orientation Histograms

(EOH) features, also called Histogram of Oriented
Gradients(HOG) in combination with a Support Vec-
tor Machine (SVM), as EOHs seemed clear, distinc-
tive features and SVMs known, fast and relatively
easy to train classifiers.
In EOHs, every pixel gets assigned a dominant gra-

dient or ‘direction’ and the magnitude of this gradi-
ent. The image is then divided into different areas
and for every area a histogram of the dominant gra-
dients is made. Our system divides the image in 7 by
7 (49) blocks, where pixels can have 9 possible orien-
tations. Other settings did not increase performance
(they rather slowed the system down severely). These
parameter settings meant that the EOH-algorithm
would feed the SVM-classifier with 441 features (7
times 7 areas each with 9 orientation bins). Quite a
lot features, but no problem for an SVM and far less
features than the number of pixels.

3.3 Step Three: Compositing

The output of the smile rating step is a list of the
most smiling faces that should be included in the final
composite. We construct binary masks that indicate
the regions from each image that should surely be
included, these consist of the rectangular face areas
corresponding to the most-smiling faces. Obviously,
there are pixels that do not belong to any face, and
we want to assign these pixels to a source image in
an optimal way, in effect forming a ‘seam’ or ‘stitch’
between the source images.

Figure 2: The graph representation of image
labeling illustrated. The nodes labeled S and T
are the source and sink nodes, connections to
these nodes indicate areas that belong to the
masks.

The problem of where to allocate this seam can be
compared to the problem of finding a minimum cut

in a graph. A cut in a graph is a set of edges that
need to be removed in order to completely sever two
arbitrary nodes, usually referred to as the “source” and
“sink”. A minimum cut is a cut whose edges have the
smallest total weight. By representing the pixels in
the image as graph nodes, and connecting each pixel
to its (4-connected) neighbors with a certain weight,
we can use the efficient min-cut/max-flow algorithm
to partition our image. If we base the weights on
both images, the minimum cut can represent a seam.
In this sense, the weights represent a cost of cutting
between a certain pair of pixels, illustrated in Figure
2. In our implementation, the weights were assigned
as follows. First, the weight of each edge (W (p, q))
is simply the sum of the costs of the connected pixels.

W (p, q) = c(p) + c(q) (1)

c(p) = cdiff(p) + cgrad(p) (2)

By computing the cost map we can influence the
preference of the min-cut algorithm to cut at certain
places. Since we want to avoid visible seams, we do
not want to cut in places where pixels have different
colors in both images, so we give a high cost to places
with different RGB pixel values, as shown in Equation
3, where I1(p) indicates pixel p from image 1.

cdiff(p) = ||I1(p)− I2(p)||1 (3)

Secondly, in order to add some extra weight to
places with mismatching edges, we add the differ-
ences in image gradients to the cost map as well, as
shown in Equation 4, where ∇I1(p) is a 6-vector of
the R, G and B gradients in both directions of im-
age 1.

cdiff(p) = ||∇I1(p)−∇I2(p)||1 (4)

Multi-image Labeling

A labeling is an assignment of pixels to the source im-
ages, so that each pixel in the final image is assigned
to only one of the source images. Using the min-cut
algorithm, we can find a labeling based on two source
images. By iteratively applying the min-cut algorithm,
we can find a labeling that assigns pixels to three or
more images.

3

Figure 3: Initial labeling. The black squares in-
dicate faces found by the previous steps.

We start with an initial estimate of the labeling,
assigning each pixel to the image in which the clos-
est masked pixel lies (shown in Figure 3). Then we
iterate over the labels, similar to the alpha expan-
sion described in [Agarwala et al., 2004]. The min-
cut algorithm is applied as if it was a two-label prob-
lem, stitching together the current composite, and
the source image for the current label α. We force the
min-cut step to only assign additional pixels to α by
connecting each pixel node that is currently assigned
to α to the source node with a high weight. After
each cycle through every label we compute the total
seam cost by summing the edge weights in Equation
2 for each pair of pixels that have a different label2.
If this seam cost does not decrease after a full cycle,
the loop stops. The final labeling looks like the one
shown in Figure 4.

Figure 4: Final labeling overlayed over the com-
posite image.

Blending

Even though the labeling found by the min-cut pro-
cedure minimizes visible seams, there are usually still
some minor artifacts. Some blending can take care
of this. Blending can be done using simple feath-
ering, the often used Poisson Image Editing [Pérez
et al., 2003], or more advanced methods such as de-
scribed in [Tao et al., 2010]. We initially planned to
use a more advanced method, but by optimizing the
seam position only small visible transitions remain and

2Refer to [Agarwala et al., 2004], Section 3.

these are effectively masked using feathering. When
the labeling has been found, binary masks are gen-
erated that indicate the complete areas to use from
each image. In stead of using these masks directly, we
convolve them with a disc shaped moving average fil-
ter, effectively “blurring” them. The images are then
blended proportionately to the soft masks. A sample
situation where this is useful is shown in Figure 5.

Figure 5: Section of an image showing a seam
without and with feather blending, respectively.

4 EXPERIMENTS

4.1 Datasets

For this project we needed some data to test and
evaluate. We gathered and labeled one dataset, and
we created another by taking photographs.

Smiles

We constructed a dataset of 7,678 pictures of faces,
about 3000 of which are smiling. This set is compiled
from a number of sources as follows.

• Around 3,000 images from the Faces in the Wild
dataset [Huang et al., 2007] which we hand-
labeled as smile, non-smile or discard3.

• The Cohn-Canade set contains 250 images la-
beled with 6 facial expressions. We used the ones
labeled “joy” as smiles.

• Around 3,700 images from the GENKI set, de-
veloped by and used for [Whitehill et al., 2009],
consisting of faces labeled as smile/non-smile,
similar to our labeling of Faces in the Wild.

We kept aside a random subset of 10% of this data
as a validation set, this set was never used for training
or parameter optimization.

3We discarded faces that were occluded and those of which
it is not clear whether they smile.

4

Group Portraits

Because we wanted to test the system as a whole, we
also collected a structured dataset of group portraits.
This set consists of a total of 127 photos of different
groups of people. Each of the 10 group portraits con-
sists of a number of photos of the same people. We
set three “difficulty levels”. In the easy condition, peo-
ple are standing separately and always look straight at
the camera, while they smile in some of the pictures
and look neutral in others. For the medium condition,
we instructed people to move closer together and to
turn their heads occasionally. The easy and medium
condition are illustrated in Figure 6. Finally, the hard
condition has the participants moving wildly, perhaps
best described as “fooling around”, which is a realistic
scenario for group portraits.

Figure 6: Typical poses for the easy and medium
condition in our group portrait dataset.

4.2 Smile Classification

The first experiment we ran to get a general impres-
sion of the accuracy of the classifier, was to train it
with different numbers of examples, and then classify
some new instances. For each of 5%, 7%, 10%, 25%,
50%, and 100% of the training data, we trained and
tested a classifier using 30-fold cross-validation. The
resulting accuracy can be seen in Figure 7.

Figure 7: Accuracy vs. training data size using
30-fold cross-validation.

Validation Set Test

Using our final classifier, we classified the samples
in the 10% validation set mentioned in Section 4.1.
The classification matrix was as follows:

Predicted
Smile Other

Class
Smile 107 12 119
Other 55 405 460

162 417 579

Yielding an accuracy of 88.4%. The high specificity
combined with the relaxed constraints mentioned in
the next section make this classifier more than
powerful enough to perform its task.

4.3 Smile Rating

The context of our systems puts a more relaxed
constraint on the classification of smiles. In stead of
making an absolute estimation of whether a random
person smiles or not, we have three simplifying
circumstances:

1. we only need to judge which face smiles more
than another, relatively.

2. the set of faces to judge belong to the same
person.

3. even if the order of the ratings is wrong, only
the highest rated face has to be a smile.

These conditions allow for a relatively inaccurate
algorithm to still perform very well on the task of
picking a smiling face. In order to evaluate this
ranking we extracted the faces of the people in the
group portraits and grouped them by person. For
each of the 54 persons, we checked whether the
highest ranked face was indeed a smile. In two of the
cases the highest rated face was clearly not the most
smiling, and in two more it was a face with closed
eyes. Since we did not train on open vs. closed eyes,
the classifier’s lack of accuracy only caused a 3.7%
error (2/54) in ‘smile picking’. Figure 8 shows a
typical set of faces, sorted by their smile rating.

5

Figure 8: Typical set of faces with their respec-
tive smile ratings, as returned by our classifier.

4.4 System as a Whole

It would be very hard to give a meaningful
quantitative evaluation. Instead we have tried to
give a good qualitative evaluation of the system as a
whole by inspecting its results: compositions from
different group portrait sets. We tried to take into
account different variations in source material. We
found that most images in which the people are
reasonably static are stitched remarkably well, an
example is shown in Figure 9. The system is most
easily disrupted by moving people, as in Figure 10.

Figure 9: Example of well-stitched image.

Figure 10: In this image, the participants moved
around a lot and subsequently the system fails.

5 CONCLUSION

We have shown that it is feasible to build a system
that automatically composes group pictures to
include everyone’s most smiling face. Not only does
it work well in our controlled circumstances, it is fast
enough to allow for extensions that increase
robustness. It is also useful and fun to use in a
real-life setting with real users.
It works under controlled, but still realistic scenarios,
where people don’t move around too much. The
results often look almost completely natural and
they could replace manually edited pictures, or serve
as a preview when people are just ‘playing around’.

5.1 Future Work & Discussion

Of course the system is not perfect after just 4
weeks of work. A few aspects of the system should
and can be improved on.
First of all, the system assumes the camera does not
move: the pictures should ideally be taken with a
camera placed on a tripod for the system to work
optimally. Small movements can be overcome by the
alignment-step, but this part of the system could
probably be improved on by using more-advanced
alignment-algorithms, based on more complex linear
projections.
Second, the system assumes that people are mostly
stationary. If they do move the clustering can fail
and this can result in very weird and unnatural
effects, like the same people occurring multiple
times in the composition. An important reason for
this is that people are clustered over multiple images
by spatial features only: the system looks for the
same persons at the same place. This part of the
system could probably be heavily improved on by
using slightly more advanced features for clustering,
like facial recognition: for example a system using
eigenfaces can probably perform much better when
people move around.
A third property of the system that maybe could be
improved on is that it now rates faces for only a very
specific feature: whether a face looks in the camera
and smiles or not. It could very well be that is not
exactly the same as “looking good in a picture”.
Further research on which features people search for
when they assess whether a person is looking good
in a picture and how these can be incorporated in an
artificial system could be a fruitful way to improve
our approach.

6

References

[Agarwala et al., 2004] Agarwala, A., Dontcheva,
M., Agrawala, M., Drucker, S., Colburn, A.,
Curless, B., Salesin, D., and Cohen, M. (2004).
Interactive digital photomontage. ACM
Transactions on Graphics (TOG), 23(3):294–302.

[Boykov and Jolly, 2002] Boykov, Y. and Jolly, M.
(2002). Interactive graph cuts for optimal
boundary & region segmentation of objects in ND
images. In Computer Vision, 2001. ICCV 2001.
Proceedings. Eighth IEEE International
Conference on, volume 1, pages 105–112. IEEE.

[Huang et al., 2007] Huang, G., Ramesh, M., Berg,
T., and Learned-Miller, E. (2007). Labeled faces
in the wild: A database for studying face
recognition in unconstrained environments.
University of Massachusetts, Amherst, Technical
Report 07, 49:1.

[Kotsia and Pitas, 2006] Kotsia, I. and Pitas, I.
(2006). Facial expression recognition in image
sequences using geometric deformation features
and support vector machines. Image Processing,
IEEE Transactions on, 16(1):172–187.

[Pérez et al., 2003] Pérez, P., Gangnet, M., and
Blake, A. (2003). Poisson image editing. ACM
Transactions on Graphics, 22(3):313–318.

[Tao et al., 2010] Tao, M., Johnson, M., and Paris,
S. (2010). Error-tolerant Image Compositing.
Computer Vision–ECCV 2010, pages 31–44.

[Viola and Jones, 2001] Viola, P. and Jones, M.
(2001). Rapid object detection using a boosted
cascade of simple features. In IEEE Computer
Society Conference on Computer Vision and
Pattern Recognition, volume 1. Citeseer.

[Whitehill et al., 2009] Whitehill, J., Littlewort, G.,
Fasel, I., Bartlett, M., and Movellan, J. (2009).
Toward practical smile detection. IEEE
transactions on pattern analysis and machine
intelligence, pages 2106–2111.

7

